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The elasticity of double-helical DNA on a nm length scale is captured in detail by the rigid base-pair model,
whose conformation variables are the relative positions and orientations of adjacent base pairs. Corresponding
sequence-dependent elastic potentials have been obtained from all-atom MD simulation and from high-
resolution structural data. On the scale of 100 nm, DNA is successfully described by a continuous wormlike
chain model with homogeneous elastic properties, characterized by a set of four elastic constants which have
been measured in single-molecule experiments. We present here a theory that links these experiments on
different scales, by systematically coarse-graining the rigid base-pair model to an effective wormlike chain
description. The average helical geometry of the molecule is accounted for exactly, and repetitive as well as
random sequences are considered. Structural disorder is shown to produce a small, additive and short-range
correction to thermal conformation fluctuations as well as to entropic elasticity. We also discuss the limits of
applicability of the homogeneous wormlike chain on short scales, quantifying the anisotropy of bending
stiffness, the non-Gaussian bend angle distribution and the variability of stiffness, all of which are noticeable
below a helical turn. The coarse-grained elastic parameters show remarkable overall agreement with experi-
mental wormlike chain stiffness. For the best-matching potential, bending persistence lengths of dinucleotide
repeats span a range of 37–53 nm, with a random DNA value of 43 nm. While twist stiffness is somewhat
underestimated and stretch stiffness is overestimated, the counterintuitive negative sign and the magnitude of
the twist-stretch coupling agree with recent experimental findings.
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I. INTRODUCTION

Local elastic properties of DNA on a nm length scale play
a vital role in basic biological processes such as chromatin
organization �1,2� and gene regulation, via indirect readout
�3–6� or via DNA looping �7–9�. The structure and elasticity
of double helical DNA on the nm scale is often described
using rigid base-pair chain �RBC� models, in which the rela-
tive orientation and translation of adjacent base pairs �BPs�
specify the conformation of the molecule �10,11�. Parameter
sets for rigid base-pair step elastic potentials were obtained
from molecular dynamics simulation �12,13� and from an
analysis of high resolution crystal structure data �14�. We
have found qualitative but not quantitative agreement be-
tween these different potentials in a recent study on indirect
readout in protein-DNA binding �15�.

On a mesoscopic length scale, it is possible to directly
measure force-extension relations for DNA in single-
molecule experiments �16�. For small external forces, DNA
behaves as a wormlike chain �WLC� �17�, i.e., an inexten-
sible semiflexible polymer with a single parameter, the bend-
ing persistence length, and no explicit sequence dependence.
An extension of the classical WLC model, reflecting the chi-
ral symmetry of the DNA double helix, includes coupled
twisting and stretching degrees of freedom �18–21�. These
become important in a force regime where the DNA mol-
ecule is already pulled straight but not yet overstretched �22�.
Interestingly, recent measurements indicate that DNA over-
twists when stretched in the linear response regime �23,24�.

The issue of relating atomistic and mesoscopic descrip-
tions of DNA elasticity has been addressed mainly by simu-

lation of oligonucleotides. Normal mode analysis using ato-
mistic �25� or knowledge-based RBC potentials �26� can
give an impression of global bending and twisting modes but
does not offer a systematic coarse-graining prescription. In
an MD simulation study in explicit solvent, a full set of
elastic constants of a fluctuating global helical axis were de-
termined �27�. A recent study �28� extended this approach,
exposing technical difficulties concerning the very definition
of the global helical axis, and deriving convergence criteria.

In this paper we present a theoretical approach to estab-
lish a relation between these different levels of detail. In a
first step, we establish a method to systematically coarse-
grain a homogeneous or repetitive sequence RBC to the
WLC scale. In contrast to recent work �29�, we take the full
average helical geometry of the chain into account. As a
result, we obtain exact expressions for the average helical
parameters and the full set of stiffnesses for bend, twist,
stretch, as well as twist-stretch coupling. We list their values
for all six dinucleotide repeats.

It has been pointed out �30� that the total apparent persis-
tence length of a WLC is composed of a static part which
originates from the sequence-dependent equilibrium bends of
the molecule, and a dynamic part induced by thermal fluc-
tuations, and their relative contributions have been measured
�31,32�. In a second step, we adapt this idea to the case of a
random sequence RBC: Extending our coarse-graining pro-
cedure to also include structural variability, we calculate the
conformational statistics of rigid base-pair chain ensembles
with random, uncorrelated base sequence. We arrive again at
an effective homogeneous WLC description. Finally, we also
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quantify the deviations from the effective WLC due to stiff-
ness variability on short scales.

The article is organized as follows: After a description of
the model �Sec. II�, our coarse-graining procedure is pre-
sented for the case of a homogeneous sequence in Sec. III.
The extension to random DNA is made in Sec. IV. In Sec. V,
the theory is related to observables measured in different
experimental situations. Section VI contains detailed com-
parisons of the predictions of the different available param-
etrizations of the RBC model with experiments on the me-
soscopic scale, as well as a discussion on the limitations of
the WLC model on short scales. Conclusions are presented in
Sec. VIII.

II. RIGID BASE PAIR MODEL OF DNA

In canonical double-stranded DNA, Watson-Crick base
pairs are stacked into a helical column. We can fix a Carte-
sian coordinate frame to the center of each base pair in a
standard way �33,34�, effectively averaging out internal dis-
tortions within the base pair. By convention, the z axis of this
right handed orthonormal frame is normal to the base pair
plane and points towards the 3� direction of the preferred
strand, while the x axis points towards the major groove.

The configuration in space of the chain is specified by the
sequence of these frames, i.e., by a 3�3 rotation matrix R
together with three Cartesian coordinates of the origin p, for
each base pair step. Only for homogeneous, nonfluctuating
DNA in an idealized B-form do all frames lie on a straight
line, with their body z axes pointing in a single direction.
Generically, the frames are displaced and rotated away from
this idealized arrangement, due to both thermal fluctuations
and sequence-dependent variations in the equilibrium confor-
mations.

A. Homogeneous representation

We represent the rotation and translation of the �k+1�-th
base pair frame relative to the kth frame by a 4�4 matrix,
written in block form as

gkk+1 = �Rkk+1 pkk+1

0 0 0 1
� . �1�

Throughout the article, matrices in square brackets will have
exactly this block structure. In idealized B-DNA along the z
axis, pkk+1�d3= �0,0 ,1�, and Rkk+1 is a rotation about d3.

This so-called homogeneous representation �see, e.g., Ref.
�35�� has the advantage that the translation and rotation re-
lating frames k and l�k can be obtained by matrix multipli-
cation along the chain

gkl = gkk+1gk+1k+2 ¯ gl−1l. �2�

For convenience we fix the lab frame on the first base pair, so
g1k represents the frame k relative to the lab. Observe that as
a general rule gkk+1=g1k

−1g1k+1. Throughout the article, the
4�4 identity matrix is denoted by e. For example, gkk=e.

B. Exponential coordinates

At finite temperature, a base pair step g=gkk+1 in a RBC
fluctuates around a mean or equilibrium value g0. To param-

etrize these fluctuations, we first introduce coordinates suit-
able to describe small deviations from g0. We will then char-
acterize thermal fluctuations in terms of their second
moments. In our model, we neglect possible couplings be-
tween neighboring base-pair steps �36,37�.

Any continuous group can be locally parametrized by its
infinitesimal generators via the exponential map. In the
g-matrix representation, this is the ordinary matrix exponen-
tial and the group generators �Xi� are 4�4 matrices. Explic-
itly, in block form,

Xi = ��i 0

0 0
�, with ��i� jk = � jik �3a�

and

Xi+3 = �0 di

0 0
�, with �di� j = �ij . �3b�

Here, �ijk and �ij are the antisymmetric and symmetric ten-
sors, respectively, and 1� i , j ,k�3. A rotation around the di
axis is generated by Xi while a translation along di is gener-
ated by Xi+3. The generators satisfy the usual commutation
relations of angular and linear momentum. Any group ele-
ment g can be written as

g = �R��� p���
0 1

� = exp��iXi� �4�

which defines �i as the exponential coordinates of g �38�. The
coordinate vector can be split up into two three-dimensional
parts �= �� ,v�. Both have a geometrical meaning: � points
along the rotation axis of R with 	�	 equal to the total rota-
tion angle, and v is the initial tangent 
 d

ds 
0p�s��, see Fig. 1.
All of SE�3� except for a measure zero set is covered one-
to-one by the coordinate range ���R6 
 	�		
�. We denote
the exponential coordinates of the equilibrium step by �0
= ��0 ,v0�, so that g0=exp��0

i Xi�.

C. Mean and covariance

Consider a base pair step subject to random fluctuations.
The corresponding deformation probability distribution is

FIG. 1. �Color online� Frame geometry. A base pair step, con-
necting the base-pair fixed material frames e and g �left-hand side�.
The frame origin trace of the corresponding screw motion is shown
in blue. It has initial tangent v. By right multiplication with gax,
the same step can be described using the frames e� and g� �red,
right-hand side�. They lie on the helical axis and point into its
direction �.
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p�g�dg. To describe deviations from equilibrium, we use ex-
ponential coordinates also for g0

−1g. Thus, a fluctuating step
is written as

g = g0 exp��iXi� = g0�e + �iXi� + O�	�	2� . �5�

The mean or equilibrium conformation is now defined by the
requirement that the random deformations � have a distribu-
tion with zero mean. To determine g0, from p�g� we compute
the distribution of �=log�g0

−1g� and optimize g0 until ���=0.
This is always possible for not too wide step distributions
�39�, and can be implemented by a gradient search with no
numerical problems. The corresponding deformation prob-
ability distribution is

p���dV� = p���A���d�1
¯ d�6. �6�

Here, p is the probability density function �PDF� and dV�

=A���d6� is the invariant volume element on the group,
which is the Jacobian factor corresponding to our choice of
curvilinear coordinates �40�. We can approximate A as a con-
stant, see Appendix B.

In a second step, the covariance matrix around g0, is ob-
tained as Cij = ��i� j�. Note that the very definition of � de-
pends on the equilibrium conformation g0, and so does C.

This formulation has the advantage that deformations
with respect to different equilibrium positions are directly
comparable and no distortions due to curvilinear coordinates
occur. It is essential for our formalism which relates fluctua-
tions given with respect to different frames �see below�. Un-
fortunately, this definition of base-pair step deformations dif-
fers from those used in available software such as Refs.
�41,42�. We explain in Appendix A how to convert between
our exponential coordinates and the coordinate set used in
Refs. �42,43�. A somewhat related approach makes use of
exponential coordinates for the rotation part of the frame
transformation only �44�.

We emphasize that we have not specified the source of
fluctuations yet. Below, we will consider either steps fluctu-
ating thermally, or steps that in addition have fluctuations
due to random sequence.

D. Combining steps

Using the matrix formalism described above, we can
combine a chain of m consecutive steps into one compound
step, which in turn is described in terms of its mean and
covariance matrix. The latter can be computed in a straight-
forward way as long as the combined fluctuations of the
compound step stay small. In other words, the short chain
must be well approximated by a �helical� rigid rod.

In this section, we consider pure thermal deformation
fluctuations. The thermal mean conformations g0��� and the
thermal covariance matrices C��� thus depend on step se-
quence �=bb� �e.g., �=5�AG3��.

Starting with m=2, let the double step sequence �13
=b1b2b3, and denote the means and covariances of the two
steps by g0��kk+1� and C��kk+1�, respectively. The compound
step can be written to first order in the fluctuations, as

g13 = g0��12��e + �12
i Xi�g0��23��e + �23

i Xi�

= g0��12�g0��23��e + �12
i g0

−1��23�Xig0��23� + �23
i Xi� .

=g0��12�g0��23��e + �13
i Xi� . �7�

We introduce some standard notation. The 6�6 adjoint
matrix Ad g is defined for any g�SE�3� by gXig

−1

= �Ad g� j
i Xj. Explicitly, if g= �R , p�, one finds

Ad g =  R 0

pi�iR R
� , �8�

written in 3�3 blocks. The Ad matrices form a representa-
tion of the group, i.e., we have the general relation
Ad�g−1h�=Ad−1 g Ad h.

We can now write �13=Ad g0
−1��23��12+�23. Finally, the

mean of the compound step g0��13�=g0��12�g0��23� and the
covariance matrix

C��13� = Ad g0
−1��23�C��12�AdT g0

−1��23� + C��23� , �9�

where we have used the model assumption that thermal fluc-
tuations of different steps are uncorrelated.

This formula has a straightforward extension to m�2.
Consider

g1m+1 = g0��12��e + �12
i Xi� ¯ g0��mm+1��e + �mm+1

i Xi� .

�10�

Commuting all deformations on the right-hand side to the
right and using the representation property of Ad, one arrives
at the first order compound step

�1m+1 = �
k=1

m

Ad g0
−1��k+1m+1��kk+1. �11�

Here g0��kk�+1�=�l=k
k� g0��ll+1�, where the product is under-

stood in increasing order. The compound mean conformation
is g0��1m+1�, and since all single step deformations are inde-
pendent random variables, the compound covariance
C��1m+1� equals

�
k=1

m

Ad g0
−1��k+1m+1�C��kk+1�AdT g0

−1��k+1m+1� . �12�

We have now characterized compound steps in terms of
their mean and covariance. This will allow us to treat repeti-
tive, poly-��1m� DNA on the same footing as homogeneous
DNA. The validity of this combination of steps is limited by
the first order approximation for the deformations. For com-
bining, it is necessary that the compound step angles stay
small, 	�1m	�1.

III. MAPPING A HOMOGENEOUS RBC
TO A HOMOGENEOUS WLC

What is the effective WLC model that corresponds to a
given rigid body chain? We will address this question first
for the case of homogeneous �or repetitive, see above� se-
quence.
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Up to this point, step deformations and therefore also the
covariance matrices were given with respect to the equilib-
rium step conformation g0, i.e., as small changes of the end
base-pair frame with respect to the start base-pair frame, see
Eq. �5�. Note that, in general, the end base-pair frame is both
offset and tilted relative to the local helical axis defined by
g0. However to relate the RBC deformations to a coarse-
grained WLC model, we are much more interested in the
elastic properties of the centerline of the chain, which in
general need not even intersect a base.

Once a covariance matrix for deformations of centerline
segments is known, the large-scale elastic properties of the
WLC are easily determined. For example, the bending per-
sistence length of the WLC is defined as the decay length of
bend angle correlations and thus depends only on the second
moment of the centerline bend angle distribution.

A. Helical centerline

In the case of a nonfluctuating chain with identical steps,
the centerline can be conveniently described using the matrix
formalism introduced above. The screw motion
s�exp�s�iXi� joins the identity frame e with g as s increases
from 0 to 1, see Fig. 1. Its screw axis is determined by a
vector from the origin of e to a point on the axis, given by
pax= 	�	−2��v, and by its direction, �. It is the “local heli-
cal axis” �41� associated with the base pair step g. When
concatenating many identical steps g one generates a RBC
with frame origins lying on a regular helix with this axis.

In addition to pax we can define a matrix Rax which rotates
e such that � becomes its third direction vector. One choice
is to take pax as the second new direction. In combination,
we then get

gax = �Rax pax

0 1
�

= � �� � v� � �

	�� � v� � �	
� � v

	� � v	
�

	�	
� � v
	�	2

0 0 0 1
� , �13�

which takes e to a frame e�=egax=gax sitting on the helix
axis with its third direction pointing along it. One can check
that g�=ggax shares these properties. The primed, on-axis
frames are “local helical axis systems” in the terminology of
Ref. �41�, see Fig. 1

Under the influence of thermal fluctuations, the helical
structure of the chain becomes irregular. It turns out that in
this case the definition of a centerline is problematic in itself.
One could try to define it as the local helical axis for each
individual base pair step. This has the disadvantage that for a
fluctuating chain, the local centerline pieces of consecutive
steps do not form a continuous curve, since they are laterally
offset. An alternative approach is to fit a continuous center-
line globally to a stretch of a RBC, using the “Curves” algo-
rithm �41�, as carried out in Ref. �27�. The fitting procedure
involves a free parameter, namely, the relative weight of
translational and rotational deviations from an ideal helix
shape. By a reasonable choice of this relative weight a pos-
teriori, periodic artifacts in the analysis can be reduced but

not eliminated �28�. Also, the fact that the resulting center-
line depends nonlocally on the base pair step conformations
introduces artificial correlations on the length scale over
which the fitting procedure extends.

We circumvent these problems in three steps. First we
transform all rigid base pairs of the chain to new frames of
reference. These are chosen such that without fluctuations,
all new BP frames lie exactly on, and point in the direction
of, a single straight helical axis. We can then identify and
average over the unwanted shear degrees of freedom. In a
last step, this reduced model is averaged over the helical
phase angle and mapped to the WLC models.

B. On-axis RBC

We would like to transform small deviations from an
equilibrium conformation g0 into small deviations from a
version of g0 which is on axis. Consider first a regular helix
composed of identical g0 steps. As explained in Sec. III B,
the on-axis step between the kth and �k+1�-th on-axis frames
is

g0	 = �g0
k−1gax�−1g0

kgax = gax
−1g0gax, �14�

where gax is the on-axis transformation �13� corresponding to
g0. Since g0	 is a transformation between on-axis frames, its
rotation and displacement vectors point along the d3 axis,
�0	 = 	�0		d3 and p0	 = 	p0		d3.

For a step gkk+1=g0 exp��iXi� of a fluctuating RBC we
calculate an on-axis version as

�g1kgax�−1g1k+1gax = gax
−1gkk+1gax = g0	gax

−1 exp��iXi�gax.

�15�

The three right-most factors in Eq. �15� clearly represent the
deviation from the on-axis equilibrium step g0	. Pulling a
similarity transformation inside the exponential series we can
then rewrite Eq. �15� as

g0	gax
−1 exp��iXi�gax = g0	 exp��	

iXi� , �16�

where the deviation from the on-axis equilibrium step �	

=Ad gax
−1�. �	 has zero mean and covariance matrix C	

ij

= ��	
i�	

j�,

C	 = Ad gax
−1CAdT gax

−1. �17�

The RBC composed of steps �16� is an equivalent descrip-
tion of the original chain, which we may call its on-axis
version. Intuitively, to each fluctuating frame g1k of the origi-
nal chain, we rigidly connected a frame g1k� in such a way
that the primed, on-axis chain fluctuates about a straight, but
still twisted, equilibrium conformation. This is illustrated in
Fig. 2. The equilibrium conformations generate a tilted helix
that is offset from the helical centerline. Thermal fluctuations
distort it, producing an irregular helix. However, on average,
the on-axis configuration is exactly lined up on a straight
helical axis. Note that we had no need to compute a fluctu-
ating axis explicitly, nor choose a weighting factor �28�.

C. Averaging over shear variables

The on-axis RBC has the nice property that the transla-
tional fluctuations ��	

4 ,�	
5�= �v	

1 ,v	
2� are now exactly transver-
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sal to the equilibrium helix axis. They are pure shear modes
and do not contribute to compression fluctuations along the
chain. Let = ��	 ,v	

3� be the vector of the four remaining
variables. Noting that the volume element A=A��� depends
only on the angular part �see Appendix B�, we write/

�18�

from which one can see that the 4�4 covariance matrix

C̃ij = �i j� is the same as C	 with its v	
1 ,v	

2 rows and columns
deleted. Thus,  has a zero mean distribution with covari-

ance matrix C̃. Here and in the following, ·̃ indicates deletion

of the rows and columns 4 and 5 in a 6�6 matrix. E.g., Ad˜

is the 4�4 adjoint matrix. Its on-axis version Ad˜ g0	 has a
particularly simple form. Using Eq. �8� and noting that p0	

��0	 �d3 we obtain

Ad˜ g0	 =�
cos	�0	 sin	�0	 0 0

− sin	�0	 cos	�0	 0 0

0 0 1 0

0 0 0 1
� . �19�

D. Averaging over the helical phase

A shear-averaged, on-axis RBC still has a finite equilib-
rium twist and anisotropic bending stiffness. To relate it to a
WLC with isotropic bending rigidity, we perform an average
over a continuous helical phase angle rotation of the refer-
ence frame �45�. An on-axis covariance matrix which is ro-
tated by a helical phase angle � around the average local
helical axis �see Eq. �17��, is

C̃� = Ad˜ g� C̃ Ad˜ Tg�, �20�

where g�=exp��X3� is a pure rotation by an angle � around

d3. Since Ad˜ g� has the form �19�, the helical phase average
comes out as

C̄ =
1

2

�

0

2


C̃�d� =�
C̃11 + C̃22

2
0 0 0

0
C̃11 + C̃22

2
0 0

0 0 C̃33 C̃34

0 0 C̃34 C̃44

� .

�21�

From C̄ one can read off the bend persistence length as lb

=h	 / C̄11. For example the mean square end-to-end distance
of a homogeneous chain �R2��2lbl for contour lengths l
� lb. The torsional modulus, normalized to units of length is

called the twist persistence length lt=h	 / C̄33 �46� �see, e.g.
�45��. Here, the on-axis helical rise h	 = 	p0		. The WLC stiff-

ness matrix �S̄= C̄−1 can be found by inversion and has the

same block structure as C̄, see also Appendix B.
When the considered covariance matrix actually belongs

to a compound step, C̄= C̄1m+1, all of the elastic parameters
can be extracted in the same way, the only difference being
that h	 has to be taken as the total helical rise on the com-

pound step. Also, S̄ will be the compound step stiffness,
which can be renormalized to one BP step by multiplying
with m.

IV. MAPPING A RANDOM SEQUENCE RBC
TO A HOMOGENEOUS WLC

Instead of homogeneous or repetitive sequences, we now
turn our attention to random sequences, as a generic approxi-
mation to the properties of natural DNA. The crucial differ-
ence is that the relaxed conformation of any realization of
random DNA is no longer a regular helix, and that the re-
laxed conformations of consecutive steps are correlated due
to sequence continuity. To get around these complications,
we introduce an ensemble average over sequence random-
ness in addition to the thermal average at fixed sequence.

A. Random sequence RBC

By a random sequence rigid base-pair chain we mean a
sequence of rigid base-pair frames generated iteratively in
the following way: Start with some choice of base at position
i=1. Then, for each new base pair i+1,

�1� Choose a base identity bi+1 at random, following a
fixed base distribution p�b� �47�.

�2� Generate the BP step conformation gii+1. Due to ther-
mal fluctuations, this conformation is also random. It follows
a PDF p�g 
�� whose center and width depend parametrically
on the step sequence �ii+1=bibi+1.

FIG. 2. �Color online� Equivalent descriptions of a poly-G RBC.
Left: Colored blocks represent base pairs in their equilibrium con-
formations. Wireframe blocks represent their on-axis counterparts.
Right: Thermal fluctuations distort the helix. �MP parameter set,
base pair size scaled down by 1/2 for clarity.�
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After m−1 iterations, one has a realization �1m=b1 . . .bm
of the random sequence and a corresponding realization
g1m=g12. . .gm−1m of conformations.

Generally, we denote by �f�g1m�� an expectation value of
some function f over conformations of a thermal, random
sequence RBC ensemble. It can be carried out sequentially:

�f�g1m�� = ��f�g1m�
�1m�� = �
b1. . .bm

p��1m��f�g1m�
�1m� .

�22�

Here the conditional expectation �¯
�� �48� is the thermal
average and �¯� denotes the global average over both ther-
mal and sequence randomness. The second equality in Eq.
�22� follows because �f�g1m� 
�1m� is already averaged over
thermal fluctuations.

A random sequence RBC captures the effects of sequence
dependent structure and stiffness. It is a good model for
DNA if we assume that �a� sequences of bases are indepen-
dent, that �b� thermal conformations of base-pair steps are
independent, and that �c� the step conformation distributions
are independent of flanking base sequence. All of these as-
sumptions are wrong in general, but may be considered rea-
sonable first approximations. In particular, relaxing �a� re-
quires extra knowledge about sequence statistics. Also, no
parametrizations of conformational correlations are yet avail-
able that would allow to relax �b�. In MD simulation studies
�36,37�, �c� was investigated, and a dependence of stiffness
and equilibrium conformations on flanking base sequence
was found. This dependence is, however, much weaker than
the spread among the existing single step parametrizations
�see Sec. VI B 1� and thus can be reasonably neglected in a
first approximation.

B. Adapting the coarse-graining procedure

The method presented in Sec. III, consists of expressing
the fluctuating conformations as deformations with respect to
a helical reference structure, before transforming to an ideal-
ized, on-axis helix. Finally irrelevant degrees of freedom are
identified and averaged over.

Two new difficulties arise in a random sequence RBC:
The first is the choice of reference structure when structural
disorder is present, since the chain no longer forms a regular
helix in the absence of thermal fluctuations. This leads to the
same problems of defining a centerline as discussed in Sec.
III A. We will therefore not choose the approach of express-
ing thermal deformations of each sequence realization with
respect to irregular on-axis frames. Rather, our strategy will
be to describe random sequence RBC conformations, just
like those of homogeneous sequences, as deformations from
some sequence-averaged, regular helix. This issue is ad-
dressed in Sec. IV C.

The second difficulty comes from the fact that the se-
quence distribution features independent bases, while the
conformation distributions depend on the base-pair steps.
Loosely speaking, the sequence distribution lives on the
nodes of the model while the conformation distribution lives

on its links. We sketch in Sec. IV D and explain in Appendix
C how to treat the short-range correlations introduced by the
requirement of sequence continuity.

C. Combining thermal and sequence randomness
for a single BP step

A base-pair step with sequence �ii+1 in a chain fluctuates
in a thermal environment. Its sequence-dependent thermal
mean conformation as well as the covariance matrix are mo-
ments of the conditional PDF p�gii+1 
�ii+1�. What changes
when �ii+1 itself is a random variable?

To start with, we observe that the sequence-dependent
variability in equilibrium conformations of B-DNA BP steps
is in fact smaller than the average thermal fluctuation size.
Since only the limit of small thermal deformations is consid-
ered throughout, it is consistent to use the same limit for the
sequence induced conformational variability.

The basic idea then is to treat sequence variability on the
same footing as thermally induced fluctuations; we add the
sequence induced deviations from a global equilibrium con-
formation as another independent source of randomness.
That is, we consider a random sequence step g
=g0 exp��iXi� which now fluctuates around a sequence-
independent global center g0, characterized by a covariance
matrix Cij = ��i� j� resulting from both sequence and thermal
fluctuations.

We now need to calculate the global center g0 and the
total covariance C from the thermal and sequence statistics.
Recalling that �¯� denotes a thermal and sequence ensemble
average, we can determine g0 by the condition that ���=0.

We then split the deformation from g0 into sequence plus
thermal parts: �= �� 
��+ ��− �� 
���. Note that the thermal
equilibrium deformation �� 
�� is a random variable, depend-
ing on �, while ��− �� 
��� is the random thermal deforma-
tion. We now discuss their relation.

Within a regime of linear response, the deformation en-
ergy of a step with fixed sequence � is a quadratic function
of the deviation from the thermal equilibrium value �� 
��.
The associated thermal covariance matrix is sequence depen-
dent:

Cth
ij��� = ��� − ��
���i�� − ��
��� j
�� . �23�

Comparing this with the thermal fluctuations introduced in
Sec. II D, one sees that g0����g0�e+ ��i 
��Xi�. Also, Eq.
�23� agrees with the C��� used there to quadratic order in the
deformations.

Similarly, the covariance of the thermal mean values can
be written down. It is sequence independent:

C0
ij = ���
��i��
�� j� , �24�

where the outermost expectation is effectively taken with
respect to p��� only, see Eq. �22�.

What is the total covariance C? The two sources of ran-
domness are of independent physical origin, but are not in-
dependent random variables: The thermal conformation dis-
tribution depends on �. Therefore, p�� 
��p���= p�� ,��
�p���p���. Splitting up the deformation into thermal and
sequence parts, one computes
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��i� j� = ���
��i��
�� j� + ��� − ��
���i�� − ��
��� j�

+ ���
��i�� − ��
��� j� + ��� − ��
���i��
�� j� . �25�

Now note that ��� 
��i��− �� 
��� j 
��=0 trivially. Using this
with the identity �¯�= ��¯
��� in Eq. �25�, one sees that the
cross-terms actually vanish. The simple result is that the se-
quence induced static covariance and the sequence-averaged
thermal covariance add up to C:

C = C0 + �Cth���� . �26�

In summary, given the covariance �or stiffness� matrices
and equilibrium values of all sixteen dinucleotide steps, and
a distribution of relative step frequencies p���, by computing
g0 and C we have characterized a single, thermally fluctuat-
ing random sequence step in terms of its center and second
moment. The global equilibrium step g0 defines a regular
helix which we take as a reference structure. Deformations
from this reference are described by the total covariance C
which includes a contribution from sequence-induced con-
formational variability. The relation �26� is the generalization
of the well known additivity of inverse static and dynamic
persistence length of the irregular WLC, to the rigid base-
pair chain model.

D. Combining thermal and sequence randomness
of a compound step

The basic idea of splitting the deformations into static
disorder parts and thermal fluctuations can be carried out for
a random sequence compound step of length m+1 bases.
While by assumption thermal fluctuations of neighboring
steps are independent random variables, the sequences of
different bases, not steps, are independent. Any realization of
a random sequence of dinucleotide steps must be “continu-
ous,” e.g., �12=AG implies that �23 can only start with a G.
This clearly correlates neighboring step sequences, and thus
also their static offsets �� 
��.

The correlations introduced by sequence continuity can be
captured by an effective uncorrelated RBC, with equilibrium

steps g0 and effective covariance Ĉ. The matrix Ĉ is again a
sum of static and thermal fluctuations, analogous to Eq. �26�,
and is derived in detail in Appendix C.

E. On-axis transformation and averaging

Having identified the regular reference structure to use,
we now just follow the coarse-graining procedure from Sec.
III. As a first step, we transform the total deformation fluc-
tuations onto the average helical axis �	 =Ad gax

−1�, where gax
is defined by the global equilibrium g0 via Eq. �13�. The
on-axis deformation then still has zero mean ��	�=0 and co-
variance matrix

C	 = Ad gax
−1Ĉ AdT gax

−1. �27�

One realization of a random sequence RBC, together with its
on-axis version, is shown in Fig. 3.

The next step in the coarse-graining procedure is to aver-
age over unwanted degrees of freedom. The first average is

that over the shear degrees of freedom �v	
1 ,v	

2�. As explained
in Sec. III C, the result is that the remaining four variables

= ��	 ,v	
3� have a 4�4 covariance matrix C̃ which equals C	

with its �v	
1 ,v	

2� rows and columns deleted.
Finally, we perform an average over the helical phase,

producing a version of the covariance that has isotropic
bending as well as twist, stretch, and twist-stretch coupling

covariances C̄= 1
2
�0

2
C̃�d�, see Sec. III D.

V. CONFORMATIONAL FLUCTUATIONS
AND EXTERNAL FORCES

A. Persistence lengths and numerical verification

The global offset g0 and the combined covariance matrix

Ĉ are constructed such that they capture the conformational
statistics of an ensemble of thermally fluctuating, random
sequence rigid base-pair chains, see Eq. �22�. From the cor-

responding averaged covariance C̄ one can read off the bend

persistence length as lb=h	 / C̄11. The torsional modulus �49�
normalized to units of length, we call the twist persistence

length lt=h	 / C̄33 �see, e.g., Ref. �45��. Here, the on-axis he-
lical rise h	 = 	p0		. Since these persistence lengths include
static variability, they are apparent persistence lengths in the
terminology of Refs. �31,32�. For example, the square end-
to-end distance, averaged over a random sequence ensemble
�	p1m+1	2��2lbl for long contour lengths l=h	m� lb.

We tested the coarse-graining from RBC to WLC by per-
forming a simple-sampling Monte Carlo �MC� simulation
according to the algorithm in Sec. IV A. The raw, off-axis
base-pair center end-to-end distances 	p1m+1	 were sampled.
Their mean squares are plotted against the contour length in

FIG. 3. �Color online� Equivalent descriptions of a realization of
a random-sequence RBC. “seq”: Colored blocks represent base
pairs in their thermal equilibrium conformations. Wireframe blocks
represent their on-axis counterparts, which do not lie on a straight
line without sequence averaging. “thermal+seq”: The same, but
with added thermal fluctuations. The top views show the reduced
helix axis offsets of the on-axis frames. �MD parameter set,
base-pair size scaled down by 40% for clarity, sequence
GCGTTGTGGGCT.�
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Fig. 4. The theoretical curves �	p	2�=2llb−2lb
2�1−e−l/lb� for

an inextensible WLC using the contour and bending persis-
tence lengths l and lb computed by coarse-graining, fit the
simulation data to within numerical error. The only devia-
tions occur below 3 nm, where the inextensible WLC model
fails to reproduce the compressible and shearable helical

RBC. In addition to the full covariance Ĉ, simulations were
also carried out for structural disorder only, setting all of the
Cth���=0. The corresponding WLC using C0 and the next-
neighbor term C1 �see Eq. �C1�� again fits the data.

Experiments that include a sequence ensemble average
and thus measure apparent persistence lenghts include cryo-
electron microscopy of frozen conformations of oligonucle-
otides �31�, AFM tracing of adsorbed random-sequence
DNA �50�, and cyclization of random fragments �32�. When-
ever such experiments are interpreted in terms of a intrinsi-
cally straight, homogeneous DNA, the apparent stiffness ma-
trix extracted from experiment corresponds to the inverse of
the total covariance ��C�−1.

B. Stiffness

A slightly different situation arises in force-extension ex-
periments carried out on single molecules �e.g., Ref.
�23,24��. An external force tilts the elastic energy landscape
of each step along the chain, introducing a bias towards those
thermal fluctuations that lengthen the molecule. No such bias
can be introduced on the sequence. Therefore the sequence
randomness part of the total conformational covariance does
not directly result in additional compliance to an external
force.

What is the remaining effect of irregular sequence in mi-
cromanipulation experiments? We discuss this question in
the weak static disorder limit, adapting the procedure of Ref.
�51�. The basic idea is to expand the elastic Boltzmann factor
B�e−��/2��� − �� 
 ���T��S�+�S������−��
��� for weak static disorder,

and to interpret the result in terms of a homogeneous chain
with renormalized stiffness. The calculation is carried out in
Appendix D. The result is that the renormalized stiffness is

the inverse total covariance ��Ĉ�−1. That is, although the
sequence disorder is quenched, the elastic response of the
random chain to external forces is the same as if the se-
quence randomness were an additional elastic compliance.
This result is valid for small sequence disorder in offsets and
stiffness, which is a good approximation for DNA, and
should hold for the entropic and enthalpic regimes of exten-
sion.

VI. DISCUSSION

A. Coarse-graining relations

We have derived all WLC elastic parameters starting from
an arbitrarily oriented and offset homogeneous RBC. We
now discuss in some detail how these coarse-grained param-
eters are related to the microscopic RBC parameters.

1. Equilibrium step

The transformation of the equilibrium step onto the heli-
cal axis Eq. �14� leaves the total rotation angle invariant.
Therefore the equilibrium twist of g0	 is �	 = 	�0	 	 = 	�0 	
� 
�0

3
. That is, the twist per base pair of the WLC equals the
total angle of rotation, not the Tw angle of the off-axis step.
The equilibrium rise on axis is h	 = 	p0		=�0

Tp0 / 	�0	 which is
different from both off-axis quantities 	p0	 and p0

3. These
differences are of order O��0

1+�0
2�2 so they become impor-

tant only when the equilibrium rotation axis �0 has signifi-
cant roll and tilt with respect to the material frame, i.e., when
the local helical parameters inclination and tip �33� are not
negligible.

2. Fluctuations

Unlike the equilibrium step, the covariance matrix is
changed not only by the rotation Rax but also by the shift pax
onto the average local helix axis. Intuitively, the on-axis
frame g� is rigidly connected to g, see Figs. 1 and 2. There-
fore, a rotational fluctuation of g with rotation vector �� will
result in an additional translational fluctuations of g� equal to
��� pax.

A familiar example of this geometrical effect is the
stretching of an ordinary coil spring along its helix axis. In
the wire material, this deformation corresponds mainly to
torsion, i.e., a rotational deformation of consecutive wire
segments. On a larger scale, the local torsion is levered into
a translation of one coil end along the helix axis. The trans-
formation �17� captures exactly this lever arm effect, which
is proportional to the total axial displacement 	pax	 and so
becomes relevant if the chain deviates from an idealized
B-DNA form.

We calculate explicitly the 3�3 blocks C	
�ab� of C	, �16�,

in terms of the corresponding blocks C�ab� of C, using �17�
and �18�. Here a ,b� �� ,v� stand for the set of rotational or
translational components, respectively. Further, we let
C�ab��=Rax

T C�ab�Rax and Pax� =Raxj
i pax

j �i, an antisymmetric ma-
trix. Using this notation,

FIG. 4. �Color online� Comparison of an MC simulation of a
random-sequence RBC to the coarse-grained effective WLC. Sym-
bols designate the measured mean squared end-to-end distances for
static disorder only �upper row� and for static plus thermal fluctua-
tions �lower row�. The theoretical curves assuming a WLC model
are shown from top to bottom for static disorder �C0 and C1, blue�,
uncorrelated static disorder �C0 only, red�, and static plus thermal

fluctuations �Ĉ, orange�, respectively. MD microscopic parameter
set, as explained below.
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C	 =  C����� C��v�� + C�����Pax�

C�v��� − Pax� C����� C�vv�� − Pax� C�����Pax� + C�v���Pax� − Pax� C��v��
� . �28�

In this expression, the rotational block C	
���� is merely a

rotated version of the off-axis rotational block C����. In con-
trast, the translational block C	

�vv� and the coupling block
C	

��v� have “leverage terms,” since rotational fluctuations
about directions perpendicular to the offset vector contribute
through a cross product with pax. For C	

�vv�, these involve the
off-axis coupling C�v�� in first order and rotational fluctua-
tions C���� in second order in 	pax	. The coupling block C	

��v�

has contributions from C���� in first order. These leverage

terms persist in the reduced WLC covariance matrix Ĉ. They
are the remainder of the microscopic description of fluctua-
tions with respect to a material frame that is offset from the
average helical axis.

Consider for example a base-pair step that exhibits x dis-
placement but no inclination or tip, i.e., pax�d1 ,��d3 ,Rax
= I3. Then �28� implies that any coupled roll-rise �C26� and
roll �C22� fluctuations will add to the stretching fluctuations
C	

66 of the chain. In addition, the off-axis roll-twist fluctua-
tion �C23� contributes to twist-stretch coupling fluctuation on
axis C	

36.
When inclination or tip are nonzero, then due to the ad-

ditional rotation Rax also shift and slide fluctuations contrib-
ute to the resulting WLC parameters. This mixing of local
deformations makes it essential to transform to an on-axis
frame before averaging over the shear degrees of freedom.

B. Comparison to experiment

1. Microscopic input

There are several different parameter sets available in the
literature, extracted from analysis of x-ray crystal structures
of DNA �14� and from molecular dynamics simulation
�12,13�. For the stiffnesses obtained from structural data, the
missing thermal energy scale is substituted by an “effective
temperature.” We here use the effective temperatures deter-
mined in a previous study �15� by equating the total, micro-
scopic fluctuation strengths of the crystal and MD covariance
matrices. The absolute magnitudes of all parameters derived
from structural data �B for B-DNA crystal and P for
protein•DNA cocrystals� therefore depend on our choice of
effective temperature. Still, their relative magnitudes are
properties of the microscopic structural data set independent
of this choice. No such restrictions apply to the MD param-
eters, since here the temperature is set by the simulation. We
also include a hybrid parametrization �MP� which combines
the equilibrium values from the P•DNA dataset with the stiff-
ness matrices from MD. This combined potential compared
favorably to the others in binding affinity prediction �15�. It
can be seen as a version of the MD potential which is cor-
rected for the well known undertwist occurring in MD simu-
lations. For MD and MP, our coarse-graining involves no

free parameter. In the following, we give the full dinucle-
otide mesoscopic parameters only for the MP potential, while
for random DNA, a comparison of the different potentials is
made.

2. Conformational statistics of random DNA

In Table I we show the resulting effective WLC covari-
ance parameters and geometry for random DNA. The values
are relevant for experiments in which an ensemble average
over sequence is implicitly performed, see Sec. V A.

For the crystal parameter sets, the equilibrium rise
and twist are close to the commonly accepted values of
0.34 nm/ step and 10.5 BP/turn. The MD rise and twist are
both low, a known effect for the force field used in that study
�52�. The MD bending persistence length is smaller than the
commonly accepted values at physiological conditions,
around 48 nm �32�. The low equilibrium rise of the MD con-
formations accounts for half of this deviation. We remark
that the elastic constants of the B and P parameter sets differ
from the MD ones since the choice of effective temperature
only fixes overall fluctuation strength, not relative stiffness
of different modes.

For all parameters sets, the twist persistence length is
similar to the bend persistence length, and smaller than the
result of 58 nm extracted from cyclization data �32�. We re-
mark that no rescaling by a different effective temperature
can bring all crystal stiffness parameters into reasonable
agreement with MD since the various deviations occur in
opposite directions.

3. Thermal vs sequence randomness

Instead of the conformations of random DNA, we can
consider thermal and sequence fluctuations separately. Table
II shows the corresponding static and thermal persistence
lengths �30�. In disagreement with the cryo-EM study �31�

TABLE I. Random sequence WLC geometry, persistence
lengths, and conformational covariances for the considered RBC
potentials.

2


�	

h	 lb lt C̄11 C̄33 C̄44 C̄34

B 10.1 0.334 27.1 15.2 12 22 0.79 0.67

P 10.5 0.334 43.4 35.7 7.7 9.4 0.86 0.85

MD 11.9 0.318 38.9 45.1 8.2 7 1.9 1.2

MP 10.5 0.334 42.8 47.8 7.8 7 1 0.55

units 1 nm nm nm rad2

103

rad2

103

nm2

103

nm rad

103
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we find that the static persistence lengths are much higher
than the thermal ones, leading to a correction of only a few
nm to the random DNA persistence lengths. This is in accor-
dance with an analysis based on cyclization experiments
�32�. Also, the static lb,0 for the P parameter sets correctly
reproduces the value found numerically in that study, using
the same parameter set.

4. Stiffness of dinucleotide repeats

We can also extract the WLC stiffness parameters of any
RBC with repetitive sequence. Here, stiffness and conforma-
tional covariance are just the inverse of each other. A detailed
view of WLC geometry and stiffness for all dinucleotide
repeats is given in Table III, for the MP parameter set. The
number of BP steps per full turn 


	�13	 and the contour length
per BP step 1

2h	13 vary by roughly 2%. Their respective val-
ues for the average step, obtained by averaging the equilib-
rium conformation and covariance, closely match commonly
accepted values for B-DNA.

The stiffness parameters are given in base-pair step units.
Conversion to more commonly used WLC units is possible
as follows: Multiplying �S11, �S22, S44, and S34 by 1

2h	13
gives, respectively, the bending persistence length in nm, the
twist stiffness �53–56� in nm, the stretch modulus in pN and
the twist-stretch coupling in pN nm. This is carried out for
the average values in the last row.

Looking at the magnitudes, the poly-AT repeat stands out
as the most bendable sequence which is at the same time
torsionally rather stiff. Another common trend in our results
is that poly-G DNA is comparatively stiff with respect to
bending. The values are comparable to MD studies in which
elastic constants of oligonucleotides were measured, with re-
peats AA, AT, GC, and GG �27� and with AT and GC �28�.
There too, poly-AT is torsionally stiff but bendable. How-
ever, bending persistence lengths from Refs. �27,28� are up
to two times bigger than either our or experimental values,
which may be due to bending relaxation being too slow to be
seen in that simulation �27�. The twisting persistence lengths
in Refs. �27,28� are generally larger than our results by about
a factor of 2, and show stronger sequence dependence, but
with similar trends. The stretch modulus and the twist-stretch
coupling depend on the sequence in a correlated way. Again
comparing with Ref. �27�, their stretch moduli agree qualita-
tively but show a different sequence dependence. Also, their
twist-stretch coupling constants are positive, unlike our and
recent single-molecule experimental results �24,23�. The
rightmost column of Table III shows the ratio of elongation
over overtwist in response to an external stretching force,

rresp= C̄44/ �2
C̄34� in nm/turn, as considered in Refs.
�23,24�.

5. Stiffness of random DNA

Recent single-molecule experiments at moderate applied
tension have given new data on DNA stiffness �23,24�. We
show the full elastic parameters collected in these articles in
Table IV, together with the average stiffness of a random
DNA computed from the MP parameter set, see Sec. V B.
The bending modulus of 128 kBT / rad2 �i.e., lb=128 BP� is
lower than the result from Ref. �24� and still on the low end
of the range of 132–138 kBT / rad2 found in previous �48–50�

TABLE II. Thermal and static contributions to the apparent per-
sistence length for different potentials. For comparison, the l� col-
umn shows the static persistence lengths when sequence continuity
is disregarded.

lb lb,th lb,0 lb,0� lt lt,th lt,0 lt,0�

B 27.1 29.5 327 211 15.2 15.4 1260 88.3

P 43.4 45.3 1040 575 35.7 36.3 2430 172

MD 38.9 42 519 175 45.1 47.7 818 256

MP 42.8 44.6 1040 575 47.8 48.8 2340 172

units nm

TABLE III. Comparison of WLC geometry and stiffness param-
eters of all six unique repetitive sequences of period two, for the
MP hybrid parametrization. In the “av.” row, the values for the
average step is shown. A conversion to WLC units is appended, see
text. MP parameter set.




	�13	
1

2
h	 13 �S̄11 �S̄33 �S̄44 �S̄34 rresp

AA 10.2 0.327 144 141 976 −38.3 0.59

AC 10.4 0.333 132 142 1140 −105 0.22

AG 10.5 0.334 139 159 1120 −103 0.25

AT 10.7 0.334 111 195 975 −80.1 0.39

GG 10.9 0.338 159 186 1090 −89.9 0.33

CG 10.3 0.338 124 126 831 −78.5 0.26

av. 10.5 0.334 134 153 1050 −87.9 0.28

units BP nm rad−2 rad−2 nm−2 �rad nm�−1 nm

av. 10.5 0.334 45 51 1440 −120

units BP nm nm nm pN pN nm

rad

TABLE IV. Experimental stiffness parameters as given in the
literature and average thermal stiffness �using the MP parameter
set�. The parameters B ,C ,g ,S from Gore et al. �24� were multiplied
by � /h	. The parameters B ,C ,D in Lionnet et al. �23� were multi-
plied by �	

2 /h	
3 ,1 /h	 ,�	 /h	

2, respectively. Beware of a missing 1/2
factor in the first formula of Ref. �23�.

�S̄11 �S̄33 �S̄44 �S̄34 rresp

�24� 163±15 327±15 781±150 −64±15 0.5

�23� 294 710 −47±20 0.28

MP 128 149 1045 −82 0.29

units rad−2 rad−2 nm−2 �nm rad�−1 nm

turn
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single-molecule experiments. �However, in Ref. �57� a lower
experimental value is reported.�

The deviation in torsional rigidity is much more dramatic.
Recent experimental values are about twice as high as our
coarse-grained results, see also Ref. �16� for a review. This
low twist rigidity is a feature of all parameter sets. For the
crystal parameter sets one might argue this indicates that
torsional deformations carry more elastic energy than bend-
ing deformations, thus “violating” an assumed equipartition
of energy. However, for the MD parameter set, this is clearly
not the case; the simulated DNA base-pair steps were indeed
more twistable than experimental values for DNA suggest. A
speculative explanation is that there may exist negative cor-
relations between thermal twist deformations of neighboring
steps which are neglected in our model, leading to an under-
estimation of twist stiffness. Negative twist-stretch coupling
has been demonstrated in Refs. �23,24�, a feature that is re-
produced with good agreement by the microscopic data, and
is also visible in the local Tw-Ri coupling of the microscopic
parameter sets �29�.

6. Effect of simplifications

Does our rather involved computation of macroscopic pa-
rameters actually make a noticeable difference? The calcula-
tions could be simplified in several ways.

One possibility is to leave away the correction for se-
quence continuity. This amounts to replacing the corrected
structural covariance C0+C� by just C0. The numerical error
made in this approximation is listed in the l� columns of
Table II. As can be seen, static variability is strongly overes-
timated �for twist, more than tenfold�. The same error can
also be seen in the middle line in Fig. 4, where the mean
square displacement for pure uncorrelated static disorder is
shown. Since the static fluctuations are only a small correc-
tions to the dominating thermal fluctuations, the overall error
made in assuming uncorrelated steps is not severe.

Another possible simplification is by disregarding the de-
tails of average helical geometry of the chain. Treating all
base-pair steps as ideal B-DNA from the beginning as in Ref.
�29�, one would perform an average of the off-axis covari-
ance matrix, over shift, slide, and helical phase angle. Invert-
ing this, one obtains a “naive” stiffness matrix Sna. The rela-

tive error made in such a computation, eij = �Sna
ij − S̄ij� / S̄ij is

shown in Table V. While the bending and twisting stiffnesses
are well approximated by the naive guess, the error in stretch
modulus �for MD� and twist-stretch coupling �for MD, MP�
is considerable. For these terms, leverage due to the axis
offset becomes important �Sec. VI A�. Especially the naive

twist-stretch coupling is not negative enough. The effect is
more pronounced with the pure MD parameter set �12,13�,
since it has unusual equilibrium conformations with bigger
axis offset.

The procedure we describe involves no approximations
regarding the geometry. This makes it directly applicable to
alternative DNA structures, and indeed any polymer with
average helical geometry, whenever microscopic covariance
matrices are available. In fact, the more the average geom-
etry deviates from idealized B-DNA, the greater is the need
to treat the helical geometry correctly.

C. Limits of applicability of the WLC model

As a continuous model, the WLC is defined down to ar-
bitrarily small length scales. However, the microscopic struc-
ture of DNA suggests that there must be a lower limit to its
applicability. Indeed, recent experimental studies �50,58�
have highlighted examples of strong bending on short scales,
in disagreement with standard WLC elasticity. Reversing
gears from the previous sections, we investigate at which
length scale an isotropic, homogeneous WLC fails to repro-
duce the behavior of a random RBC. We start with the isot-
ropy of bending in all directions, which is not a local sym-
metry of the RBC and comes about only after averaging over
several turns. Another feature of the continuous WLC is the
Gaussian bend angle distribution of short segments, which
again is not representative of a random sequence RBC. Fi-
nally, the effective WLC of a random sequence RBC has
homogeneous stiffness constants. If this were the whole
truth, there would be no indirect readout. We quantify the
deviations from this average behavior due to sequence fluc-
tuations on short scales.

1. Anisotropic bending

A feature of short compound steps not captured by the
coarse-grained WLC limit is their anisotropic bending stiff-
ness. On scales much longer than a full turn, bending will be

isotropic. Using the compound covariance C̃ �see Eq. �11��
we can quantify the decay of anisotropy.

The ratio of the two principal bending stiffnesses as a
function of chain length is shown in Fig. 5. The oscillatory
decay results from orientational averaging over fractional
turns of the helix. Since linear response is always symmetric,
the bending anisotropy has minima every half turn of the
double helix. For exactly two full turns �21 BP�, anisotropy
is suppressed completely, but already a 5 BP compound step
at almost a half turn is essentially isotropic. This behavior
agrees nicely with that of the two principal bending stiff-
nesses measured in Ref. �27� for oligonucleotides of increas-
ing length. Their stiffnesses are equal at around 6 BP, in line
with the fact that MD potential produces a 12 BP/turn helix
structure.

2. Bend angle distributions for short chains

The combined covariance matrix C̃1m+1 gives the second
moment of the distribution p�1m+1� of deformations, ob-
served in a thermal ensemble of random sequence, length m

TABLE V. Relative error in stiffness parameters made when
using “naive” matrix elements instead of the coarse-grained param-
eters described above. Values are given in %. Average step BP
parameters.

e11 e33 e44 e34

MD 3 −13 59 50

MP 2 −7 −5 48
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compound steps. Here it is not necessary that the single step
deformation distributions have a Gaussian shape. Indeed
such an assumption depends on the choice of coordinates.

Nevertheless, let us for the moment additionally assume
that for each sequence, the single step thermal deformation
distributions were in fact Gaussians. The deformation of a
specific compound step with sequence �1m+1 then again fol-
lows a Gaussian distribution p�1m+1 
�1m+1�, since for the
small deformation angles we consider, it is the result of a
convolution of the single step covariances.

Sequence randomness changes this picture. The deforma-
tion distribution of an ensemble of random compound steps
p�1m+1�= �p�1m+1 
�1m+1�� is a sequence average of several
Gaussians with different offsets and widths and thus in gen-
eral will deviate from a Gaussian shape.

In a recent AFM study of DNA adsorbed to a coverslip
�50�, bend angle distributions of DNA over short lengths
have been found to favor large bend angles much more than
expected from the WLC model. It is interesting to ask
whether this can be explained as an effect purely of sequence
randomness as outlined above. We show in Fig. 6 the effec-
tive potential Ueff for the total bend angle �= ��1,m+1

1 �2

+ �1,m+1
2 �2�1/2 of random sequence compound steps of differ-

ent lengths m. It was extracted from histograms of a simula-
tion as described in Sec. IV A. For compound steps shorter
that 5 BP, the effective potentials stay well below the respec-
tive harmonic potentials that correspond to an isotropic WLC
model with the coarse-grained random DNA persistence
length of lb=42.8 nm. This is the combined result of the
spread in bending stiffness resulting from sequence random-
ness and from anisotropic bending. However, above 5 BP the
observed deviations are negligible and thus insufficient to
explain the broader-than-Gaussian bend angle distributions
observed in �50� for DNA as long as 15 BP.

3. Short-scale stiffness variability

We quantify the breakdown of the assumption of
sequence-independent WLC stiffness for short random

chains. The thermal covariance matrix C̃th��1m+1� �11� of a
compound step with fixed sequence �1m+1 was calculated in

Sec. II D. While the mean thermal covariance matrix M

= �C̃th��1m+1�� is just the sequence average, the covariances
of the 4�4 matrix entries are given by

V1m+1
ijkl = ��C̃ij��1m+1� − Mij��C̃kl��1m+1� − Mkl�� . �29�

In a lengthy but straightforward calculation �not shown�, this
expectation can be evaluated in terms of single-step and
nearest-neighbor static covariances of the matrix entries.
Again, including the nearest neighor cross covariances takes
sequence continuity into account. For example, the fact that
it is impossible to combine two of the comparatively soft
pyrimidine-purine �14� steps in a row, reduces the variability
of the average stiffness across random sequence compound
steps.

From the result, we can characterize stiffness variability;
the relative spread of angular stiffness coefficients of com-
pound steps over all sequences is shown in Fig. 7. Explicitly,

FIG. 5. Bending anisotropy. The ratio of larger over smaller
bending stiffness decays in an oscillating fashion with compound
step length. MP parameter set, average step geometry.

FIG. 6. �Color online� Effective potential for the total bend
angle � �curve with symbols, green�. The curves without symbols
�blue� show the harmonic approximation to the effective potential
that results of a fine-graining of an isotropic WLC with the corre-
sponding coarse-grained persistence length. Compound step length,
from left to right: 1,2,3,5,10 BP. MP parameter set.

FIG. 7. �Color online� Relative spread �S /S of the bend �lower
curve with diamonds, green� and twist �upper curve with diamonds,
blue� stiffness coefficients vs compound step length. Ignoring se-
quence continuity leads to overestimation of the stiffness variability
�bend, lower green triangles; twist, upper blue triangles�.
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�S /S= �V1m+1
iiii �1/2 /Mii, where S=Sii and i=1,3. After one full

turn, variability in stiffness is down to 5%. The effect of
sequence continuity is to reduce the variability compared
to a model with independent step sequences, analogous to
Table II.

D. Limitations of the RBC model

The main physical assumptions we have made come
about by adopting the RBC model as starting point of our
considerations. As a consequence, we treat thermal deforma-
tion fluctuations of neighboring steps as independent and
also disregard internal deformations of a base pair such as
propeller twist or buckle. These assumptions are not rigor-
ously justified, but reasonable in view of the difficulties in
obtaining reliable parameter sets even for the simpler RBC
model.

Nevertheless our framework can be extended to improve
on both of these points. Nearest-neighbor correlations in
base-pair parameters may be included by extending the
model to a full Markov chain. Internal deformations could be
added by extending the configuration space, leading to a
birod �59� in the continuum limit. However, for either of
these interesting generalizations, a microscopic parametriza-
tion is an open challenge in itself. The fact that dinucleotide
step stiffness depends overall rather weakly on the flanking
sequence �36� and the encouraging agreement with mesos-
copic data we found, suggest that the main features of
coarse-grained DNA elasticity are captured already by our
more basic model. Still, the low twist rigidity we found
might be a result of missing negative twist correlations.

VII. SUMMARY

This work deals with a simple question: What is the long-
wavelength limit of the rigid base-pair chain model for the
local, sequence dependent structure and elasticity of DNA?
In the following, we summarize the technical aspects of our
work and the results of the comparison of microscopic po-
tentials with direct mesoscopic experimental observations.

For coarse-graining the RBC model, the most intuitive
starting point is to describe the irregular helical conformation
of DNA in solution by a curved centerline. The fitting algo-
rithm �41� defining its shape however inevitably introduces
an arbitrary weighting factor and complicates a statistical
analysis of thermally fluctuating conformations, see Sec.
III A. We have tried to circumvent these problems by choos-
ing a different approach in which irregular helix axes need
not be considered. In essence, we reduce the general, irregu-
lar case to an ideal B-DNA geometry, by defining “on-axis
versions” of the RBC model. For homogeneous ideal B-form
DNA, it becomes trivial to integrate out the two lateral shear
degrees of freedom of the RBC, to obtain all four mesos-
copic elastic constants.

The first problem one encounters in this approach is the
general helical geometry of DNA: Neither are the material
frames oriented along the helical axis, nor are the base pairs
centered on the axis. The consequences of this arrangement
for the mesoscopic elastic properties are familiar from ordi-

nary coil springs; e.g., a spring is much more extensible than
the wire which it is made of �see also Sec. VI A�.

A second complication arises in the case of heterogeneous
DNA sequences which introduce small, intrinsic deforma-
tions as well as variable stiffness. In Sec. IV we have shown
how to include the intrinsic variability of random DNA along
the same lines as thermal fluctuations of an intrinsically
straight helix. We have also incorporated a correlation effect
inherent in the requirement of sequence continuity. Our
theory reproduces the numerical and experimental observa-
tion that structural disorder contributes less than 10% of the
total conformational fluctuations. Finally, we have extended
our formalism �following Ref. �51�� to the case of an applied
external force. We find that the covariance �or inverse stiff-
ness� of the effective WLC is a sum of structural and thermal
covariances, Eq. �26�. This result generalizes the well-known
inverse additivity of static and thermal bending persistence
lengths.

Our results allow a direct comparison of the various ex-
isting microscopic potentials to AFM imaging, cyclization
and single-molecule stretching and twisting experiments,
with no free parameter, Sec. VI B. Given the unclear concep-
tual basis for extracting microscopic parameters from crystal
structures and the long-term stability problems of the force
fields employed in MD simulations, the overall agreement is
striking. The microscopic bending persistence lengths match
to within 5%; the predicted twist persistence is about 50%
lower, and the magnitudes of compressional modulus and
twist-stretch coupling are roughly 50% higher than the me-
soscopic experimental values. Notably, our results also re-
produce the order of magnitude and the negative sign of
twist-stretch coupling.

We have also quantified the variability of WLC param-
eters across all possible dinucleotide repeats, Sec. VI B 4,
finding pronounced variability especially in the twist-stretch
coupling stiffness. Quite interestingly, the homogeneous
WLC description seems to be applicable down to length
scales corresponding to one or two turns of the double helix,
Sec. VI C. On shorter scales, there occur a noticeable aniso-
tropy in the bending rigidity and sequence dependent vari-
ability in the elastic constants. We have also shown that the
bend angle distributions of a random ensemble has consider-
ably bigger tails than the linear elastic assumption of a
Gaussian.

VIII. CONCLUSIONS

In this article we have shown how to coarse-grain se-
quence dependent rigid base-pair chain models of DNA
structure and elasticity to the wormlike chain level. In par-
ticular, we accounted for the helical geometry and the se-
quence disorder in random DNA, and we have discussed the
range of validity of the coarse-grained model. Our results
make it possible to quantitatively connect experiments �and
simulations� on microscopic and mesoscopic length scales.
While making this connection is conceptually important, we
do not claim advantages in extracting the mesoscopic elastic
constants from microscopic experiments. However, in a bio-
logical context there is certainly more to DNA than the
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wormlike chain model can describe, and the need for a reli-
able model of short-scale, sequence dependent elasticity is
evident. Here, the comparison of the predicted to the ob-
served mesoscopic behavior constitutes an essential test of
any microscopic parameter set, especially considering an ex-
perimental precision approaching one percent for the meso-
scopic bending rigidity �32�. While more work is certainly
needed, the present results add to the credibility of the avail-
able RBC parametrizations.
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APPENDIX A: COORDINATE CONVERSION

How does one obtain the covariance matrix C and equi-
librium conformations g0 for a given collection �gk�1�k�N of
BP frame conformations? We can first determine g0 by re-
quiring that �g0

−1gk�k has mean 0 in exponential coordinates.
For not too wide distributions, such a center always exists
and is unique �39�. Then, Cij = ��i� j� is the standard covari-
ance matrix of �g0

−1gk�k in exponential coordinates.
However, for the potential parametrizations considered

here, only the equilibrium values �0 and covariance matrices
C�

ij = ���−�0�i��−�0� j� with respect to the global coordinates
�= �� ,� ,� ,q1 ,q2 ,q3� as defined in Ref. �43� and used in Ref.
�42�, are given. Here, �= �� ,� ,�� are twist, tilt, and roll
angles but differ from our choice of angles and the q
= �q1 ,q2 ,q3� gives the translation vector with respect to the
midframe Rm. The conversion formulas are

R��� = exp���/2 − arctan��/����3�exp���2 + �2�2�

�exp���/2 + arctan��/����3� ,

Rm��� = exp���/2 − arctan��/����3�exp���2 + �2/2�2�

�exp��arctan��/����3�, and p��� = Rm���q ,

�A1�

together determining the frame conformation g���. We
checked that the variation of the volume element in the re-
gion of noticeable probability around g0 is small compared to
the variations in the probability density. Therefore neglecting
the former, we get g0=g��0�. In linear order around the equi-
librium position, we can then transform the covariance ma-
trix C� given in � coordinates to exponential coordinates us-
ing just the Jacobian matrix J0 of the coordinate transition
map ������=log�g����. This gives C=J0C�J0

T. We have cal-
culated J0= 
 ��

�� 
�0
analytically. Its 3�3 blocks are

��i

�� j = 1/2 tr��iR
T��jR� ,

��i

�qj = 0,

�vi

�� j = �RT��jRmidq�i,

��v�
��q�

= RTRmid. �A2�

All coarse graining calculations presented in this article use
the matrices C converted in this way as a starting point.

The exponential coordinates of the equilibrium con-
formations have the usual symmetries under strand
change and reading direction reversal: Denote by �̄ the
sequence complementary to �, e.g., AG=CT, and let
E=diag�−1,1 ,1 ,−1 ,1 ,1�. Then as �→ �̄, �0

= �Ti0 ,Ro0 ,Tw0,Sh0 ,Sl0 ,Ri0�→E�0. Due to the �0 depen-
dent coordinate conversion above, the body-frame covari-
ance matrix does not obey the corresponding symmetries,
CyECE. While this may seem a serious drawback of the
coordinate system we use here, it turns out that in the on-
axis, shear and helical phase averaged covariance matrices,
the strand-exchange symmetry is reestablished. Therefore,
our coarse-grained results are indeed independent of the
reading sense.

APPENDIX B: VOLUME ELEMENT

In our coordinates, ln A���=− 1
6 	�	2+O�	�	4�, so that in a

Gaussian approximation

p���dV� � e−�1/2��i��S�ij+Āij��
j
d6�, Ā = �1

3
I3 03

03 03
� .

�B1�

Here, I3 and 03 are the 3�3 identity and zero matrices,
respectively. In DNA, the distributions p��� of single steps
are very narrow. Therefore when computing moments, in
particular, the covariance matrix Cij = ��i� j�, we can extend
the integration boundaries to infinity with negligible error.

Performing the integral we then get the relation �S+ Ā

=C−1. Since �S� Ā, in making the approximation �S=C−1,
we introduce an error of less than 1% for typical B-DNA
steps. That is, the stiffness matrix �S is indeed given by the
inverse of the covariance.

APPENDIX C: CORRELATIONS INDUCED
BY SEQUENCE

Consider the combined fluctuations of a short RBC con-
sisting of m BP steps. By the assumption of independent
bases, the joint pdf of sequence steps along the chain is the
product of base PDFs, p��12, . . . ,�mm+1�=�k=1

m+1p�bk�. This
implies that correlations between static offsets extend up to
nearest neighbor steps. We write
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���kk+1
i 
bkbk+1���ll+1

j 
blbl+1�� = �
C0

ij , l = k ,

C1
ij , l = k + 1,

C1
ji, l = k − 1,

0, otherwise.
�

�C1�

Here, the covariance of static offsets C0 and the new nearest-
neighbor term C1 are defined by the left-hand side. They can
be computed when p��� is known.

There are no correlations in the model between thermal
fluctuations of nearest neighbors; also analogous to the dis-
cussion after Eq. �25�

���l−1l
i 
bl−1bl���ll+1

j − ��ll+1
j 
blbl+1��� �C2�

can be seen to vanish by taking the conditional expectation
�¯
blbl+1� first. As a result, static offsets are not correlated
with thermal fluctuations even though the thermal PDF does
depend on sequence.

We can now apply the procedure given in Sec. II D for
combining the m base pairs of the chain steps into a com-
pound step. The compound deformation

�1m+1 = �
k=1

m

Ad g0
k−m�kk+1. �C3�

Considering the static part first, using Eq. �C1�, we are left
with a sum of appropriately transformed single-step covari-
ances C0 and in addition a sum of nearest neighbor cross-
terms involving C1. The covariance of static offsets
���1m+1

i 
�1m+1���1m+1
j 
�1m+1�� is

C0;1m+1 = �
l=0

m−1

Ad g0
−lC0AdT g0

−l + �
l=0

m−2

Ad g0
−lC�AdT g0

−l,

where C� = C1AdT g0
−1 + Ad g0

−1C1
T. �C4�

Note that two neighboring compound steps are still corre-
lated by sequence continuity at their interface. From Eq. �C4�
we have the recursion relation

C0;1l+1 = Ad g0
−1C0;1lAdT g0

−1 + C0 + C�. �C5�

The same relation is obeyed by a sequence of independent
steps with static covariance matrix C0+C�. We conclude that
except for a boundary term C� at the beginning of the chain,
a RBC with independent static offsets and with covariance
C0+C� exhibits the same effective static covariance as the
original short range correlated chain. The relative error in
effective compound covariance is of order 1 /m. We will ne-
glect this error in the following.

Finally, we can combine the static and thermal random-
ness by summing their covariances, since they are uncorre-
lated. The total covariance matrix C1m+1

ij = ��1m+1
i �1m+1

j � of the
compound deformation is

C1m+1 = C0;1m+1 + Cth;1m+1 = �
l=0

m−1

Ad g0
−lĈAdT g0

−l, �C6�

where Ĉ= �C0+C��+ �Cth����. In summary, we have de-
scribed the conformational statistics of a compound step in-
cluding sequence randomness by an effective, stepwise inde-

pendent RBC whose covariance Ĉ is the sum of static and
sequence parts and incorporates the additional requirement
of sequence continuity.

APPENDIX D: RANDOM RBC RESPONSE

The expectation value of an observable f�g1m�, e.g., the z
extension p1m

3 , for a fixed sequence �1m, is given by the
multiple integral

�f 
�1m�� =
1

Z � �
k=1

m−1

dV�kk+1� f�g1m�B�e
−�U�g1m�,

B� = e−��/2� �
k=1

n−1
��kk+1 − ���
�kk+1��TS��kk+1−���
�kk+1��. �D1�

In this expression, Z is the partition sum and U�g1m� is an
external potential, e.g., U=Fp1m

3 for linear stretching with a
force F. For a start, the elastic Boltzmann weight B�, has
sequence dependent offsets but constant stiffness matrix S.
The auxiliary parameter � is introduced here to keep track of
orders in the following weak static disorder expansion:

B�

B0
= 1 + ��

k=1

m−1

�kk+1
T �S��
�kk+1� +

�2

2 �
k=1

m−1

− ��
�kk+1�T

��S��
�kk+1� +
�2

2
�

k=1

m−1

�kk+1
T �S��
�kk+1��2

+ O��3� .

�D2�

We proceed to calculate the global expectation value �f��

=�b1...bm
p��1m��f 
�1m��, in a random sequence ensemble.

Using Eqs. �D2� and �D1�, and interchanging summation and
integration, the result is

�f�� =� f�1 + �2�21

2 �
k=1

m−1

�kk+1
T SC0S�kk+1

+ �
k=2

m−1

�k−1k
T SC1S�kk+1���

�=0

. �D3�

As can be seen, the first order term from Eq. �D2� vanishes in
the sequence average. The first quadratic term produces a
global constant relevant only for normalization which was
discarded. Finally, the second quadratic term in Eq. �D2�
results in expressions involving the static covariance C0 and
nearest-neighbor covariance C1 �see Appendix C�, in Eq.
�D3�. The square bracket term can now be interpreted as the
truncated expansion of an exponential. Then Eq. �D3� is, to
second order, identical to an expectation value taken without
static disorder but with renormalized elastic energy �46�
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�f�� =
1

Z̃
� �

k=1

m−1

dV�kk+1� fe−�U

� e−�/2��k=1
m−1�kk+1

T �S−�2�SC0S��kk+1−2�k=2
m−1�k−1k

T �2�SC1S�kk+1�.

�D4�

We conclude that under arbitrary external forces, the random
sequence RBC ensemble responds in the same way as a ho-
mogeneous RBC with renormalized stiffness. It is an
exercise in Gaussian integrals to verify that in the special
case U=0, the renormalized elastic energy in Eq. �D4�
produces the covariances ��kk+1

i �kk+1
j ��=1= ��S�−1ij +C0

ij and
��k−1k

i �kk+1
j ��=1=C1

ij, to second order in �. This matches nicely
with the sum of static covariance �Eq. �C1�� and thermal
covariance �Cth� of the free chain, in agreement with the
result in Sec. IV D. Following the discussion in Appendix C,
the chain is equivalent to a homogeneous, independent-step

RBC with stiffness matrix ��Ĉ�−1 and global equilibrium
step g0.

What changes if the stiffness also depends on sequence?
We split up the thermal covariance matrix �23� into its aver-
age and sequence-dependent parts Cth���= �Cth����
+�Cth���. Since C scales as ���2, it is natural to assign an
order of �2 to the term �Cth���, so that the variations in width
of the distribution are of order �. We then replace

�S → ��Cth� + �2�Cth��kk+1��−1 = Sth − �2�2Sth�CthSth,

�D5�

in Eq. �D1�, where �Sth= �Cth�−1. Repeating the expansion of
B� as before, all occurrences of S in Eq. �D2� are replaced by
Sth. The only extra term −�2���kk+1

T Sth�Cth��kk+1�Sth�kk+1

drops out in the sequence average �D3�. Thus, sequence de-
pendent stiffness drops out to second order �60�.

In summary, to second order in �, a random RBC en-
semble with sequence disorder in offsets and stiffness, pro-
duces the same response to external forces or torques as a
homogeneous chain with a renormalized elastic energy. In

particular, at zero applied force, the effective covariance Ĉ is
recovered.
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